Function reference
-
SD2011
- Social Diagnosis 2011 - Objective and Subjective Quality of Life in Poland
-
codebook.syn()
- Makes a codebook from a data frame
-
compare()
- Comparison of synthesised and observed data
-
compare(<fit.synds>)
print(<compare.fit.synds>)
- Compare model estimates based on synthesised and observed data
-
compare(<synds>)
compare(<data.frame>)
compare(<list>)
print(<compare.synds>)
- Compare univariate distributions of synthesised and observed data
-
glm.synds()
lm.synds()
print(<fit.synds>)
- Fitting (generalized) linear models to synthetic data
-
multi.compare()
- Multivariate comparison of synthesised and observed data
-
multinom.synds()
- Fitting multinomial models to synthetic data
-
numtocat.syn()
- Group numeric variables before synthesis
-
polr.synds()
- Fitting ordered logistic models to synthetic data
-
read.obs()
- Importing original data sets form external files
-
replicated.uniques()
- Replications in synthetic data
-
sdc()
- Tools for statistical disclosure control (sdc)
-
summary(<fit.synds>)
print(<summary.fit.synds>)
- Inference from synthetic data
-
summary(<synds>)
print(<summary.synds>)
- Synthetic data object summaries
-
syn()
syn.strata()
print(<synds>)
- Generating synthetic data sets
-
syn.bag()
- Synthesis with bagging
-
syn.ctree()
syn.cart()
- Synthesis with classification and regression trees (CART)
-
syn.catall()
- Synthesis of a group of categorical variables from a saturated model
-
syn.ipf()
- Synthesis of a group of categorical variables by iterative proportional fitting
-
syn.lognorm()
syn.sqrtnorm()
syn.cubertnorm()
- Synthesis by linear regression after transformation of a dependent variable
-
syn.logreg()
- Synthesis by logistic regression
-
syn.nested()
- Synthesis for a variable nested within another variable.
-
syn.norm()
- Synthesis by linear regression
-
syn.normrank()
- Synthesis by normal linear regression preserving the marginal distribution
-
syn.passive()
- Passive synthesis
-
syn.pmm()
- Synthesis by predictive mean matching
-
syn.polr()
- Synthesis by ordered polytomous regression
-
syn.polyreg()
- Synthesis by unordered polytomous regression
-
syn.ranger()
- Synthesis with a fast implementation of random forests
-
syn.rf()
- Synthesis with random forest
-
syn.sample()
- Synthesis by simple random sampling
-
syn.satcat()
- Synthesis from a saturated model based on all combinations of the predictor variables.
-
syn.smooth()
- syn.smooth
-
syn.survctree()
- Synthesis of survival time by classification and regression trees (CART)
-
synthpop-package
synthpop
- Generating synthetic versions of sensitive microdata for statistical disclosure control
-
utility.gen(<synds>)
utility.gen(<data.frame>)
utility.gen(<list>)
print(<utility.gen>)
- Distributional comparison of synthesised and observed data
-
utility.tab(<synds>)
utility.tab(<data.frame>)
utility.tab(<list>)
print(<utility.tab>)
- Tabular utility
-
utility.tables(<synds>)
utility.tables(<data.frame>)
utility.tables(<list>)
print(<utility.tables>)
- Tables and plots of utility measures
-
write.syn()
- Exporting synthetic data sets to external files