Tables and plots of utility measures
utility.tables.Rd
Calculates and plots tables of utility measures. The calculations of
utility measures are done by the function utility.tab
.
Options are all one-way tables, all two-way tables or three-way tables
for a specified third variable along with pairs of all other variables.
This function can be also used with synthetic data NOT created by
syn()
, but then an additional parameters not.synthesised
and cont.na
might need to be provided.
Usage
# S3 method for synds
utility.tables(object, data,
tables = "twoway", maxtables = 5e4,
vars = NULL, third.var = NULL,
useNA = TRUE, ngroups = 5,
tab.stats = c("pMSE", "S_pMSE", "df"),
plot.stat = "S_pMSE", plot = TRUE,
print.tabs = FALSE, digits.tabs = 4,
max.scale = NULL, min.scale = 0, plot.title = NULL,
nworst = 5, ntabstoprint = 0, k.syn = FALSE,
low = "grey92", high = "#E41A1C",
n.breaks = NULL, breaks = NULL, ...)
# S3 method for data.frame
utility.tables(object, data,
cont.na = NULL, not.synthesised = NULL,
tables = "twoway", maxtables = 5e4,
vars = NULL, third.var = NULL,
useNA = TRUE, ngroups = 5,
tab.stats = c("pMSE", "S_pMSE", "df"),
plot.stat = "S_pMSE", plot = TRUE,
print.tabs = FALSE, digits.tabs = 4,
max.scale = NULL, min.scale = 0, plot.title = NULL,
nworst = 5, ntabstoprint = 0, k.syn = FALSE,
low = "grey92", high = "#E41A1C",
n.breaks = NULL, breaks = NULL, ...)
# S3 method for list
utility.tables(object, data,
cont.na = NULL, not.synthesised = NULL,
tables = "twoway", maxtables = 5e4,
vars = NULL, third.var = NULL,
useNA = TRUE, ngroups = 5,
tab.stats = c("pMSE", "S_pMSE", "df"),
plot.stat = "S_pMSE", plot = TRUE,
print.tabs = FALSE, digits.tabs = 4,
max.scale = NULL, min.scale = 0, plot.title = NULL,
nworst = 5, ntabstoprint = 0, k.syn = FALSE,
low = "grey92", high = "#E41A1C",
n.breaks = NULL, breaks = NULL, ...)
# S3 method for utility.tables
print(x, print.tabs = NULL, digits.tabs = NULL,
plot = NULL, plot.title = NULL, max.scale = NULL, min.scale = NULL,
nworst = NULL, ntabstoprint = NULL, ...)
Arguments
- object
an object of class
synds
, which stands for 'synthesised data set'. It is typically created by functionsyn()
and it includesobject$m
synthesised data set(s) asobject$syn
. This a single data set whenobject$m = 1
or a list of lengthobject$m
whenobject$m > 1
. Alternatively, when data are synthesised not usingsyn()
, it can be a data frame with a synthetic data set or a list of data frames with synthetic data sets, all created from the same original data with the same variables and the same method.- data
the original (observed) data set.
- cont.na
a named list of codes for missing values for continuous variables if different from the
R
missing data codeNA
. The names of the list elements must correspond to the variables names for which the missing data codes need to be specified.- not.synthesised
a vector of variable names for any variables that has been left unchanged in the synthetic data.
- tables
defines the type of tables to produce. Options are
"oneway"
,"twoway"
(default) or"threeway"
. If set to"oneway"
or"twoway"
all possible tables fromvars
are produced. For"threeway"
,third.var
may be specified and all three-way tables between this variable and other pairs of variables are produced. If a third variable is not specified the function chooses the variable with the largest median utility measure for all three-way tables it contributes to.- maxtables
maximum number of tables that will be produced. If number of tables is larger, then utility is only measured for a sample of size
maxtables
. You cannot produce plots of twoway or three way tables from sampled tables
.
- vars
a vector of strings with the names of variables to be used to form the table, or a vector of variable numbers in the original data. Defaults to all variables in both original and synthetic data.
- third.var
when
tables
is"threeway"
a variable to make the third variable with all other pairs- useNA
determines if
NA
values are to be included in tables. Only applies for method"tab"
.- ngroups
if numerical (non-factor) variables included with
method = "tab"
will be classified into this number of groups to form tables. Classification is performed usingclassIntervals()
function forn = ngroups
. By default,style = "quantile"
, to get appropriate groups for skewed data. Problems for variables with a small number of unique values are handled by selecting only unique values of breaks. Arguments ofclassIntervals()
may be, however, specified in the call toutility.tables()
.- tab.stats
statistics to include in the table of results. Must be a selection from:
"VW"
,"FT"
,"JSD"
,"SPECKS"
,"WMabsDD"
,"U"
,"G"
,"pMSE"
,"PO50"
,"MabsDD"
,"dBhatt"
,"S_VW"
,"S_FT"
,"S_JSD"
,"S_WMabsDD"
,"S_G"
,"S_pMSE"
,"df"
,dfG
. Iftab.stats = "all"
, all of these will be included. Seeutility.tab
for explanations of measures.- plot.stat
statistics to plot. Choice is
"VW"
,"FT"
,"JSD"
,"SPECKS"
,"WMabsDD"
,"U"
,"G"
,"pMSE"
,"PO50"
,"MabsDD"
,"dBhatt"
,"S_VW"
,"S_FT"
,"S_JSD"
,"S_WMabsDD"
,"S_G"
,"S_pMSE"
. Seeutility.tab
for explanations of measures.- plot
determines if plot will be produced when the result is printed.
- print.tabs
logical value that determines if table of results is to be printed.
- digits.tabs
number of digits to print for table, except for p-values that are always printed to 4 places.
- max.scale
a numeric value for the maximum value used in calculating the shading of the plots. If it is
NULL
then the maximum value will be replaced by the maximum value in the data.- min.scale
a numeric value for the minimum value used in calculating the shading of the plots. If it is
NULL
then the minimum value will be replaced by zero.- plot.title
title for the plot.
- nworst
a number of variable combinations with worst utility scores to be printed.
- ntabstoprint
a number of tables to print for observed and synthetic data with the worst utility.
- k.syn
a logical indicator as to whether the sample size itself has been synthesised.
- low
colour for low end of the gradient.
- high
colour for high end of the gradient.
- n.breaks
a number of break points to create if breaks are not given directly.
- breaks
breaks for a two colour binned gradient.
- ...
additional parameters
- x
an object of class
utility.tables
.
Details
Calculates tables of observed and synthesised values for the variables
specified in vars
with the function utility.tab
and produces
tables and plots of one-way, two-way or
three-way utility measures formed from vars
. Several options for utility
measures can be selected for printing or plotting. Details are in help file
for utility.tab
.
The tables and variables with the worst utility scores are identified. Visualisations of the matrices of utility scores are plotted. For threeway tables a third variable can be defined to select all tables involving that variable for plotting. If it is not specified the variable with tables giving the worst utility is selected as the third variable.
Value
An object of class utility.tab
which is a list with the following
components:
- tabs
a table with all the selected measures for all combinations of variables defined by
tables
,third.var
, andvars
.- plot.stat
measure used in
mat
andtoplot
.- tables
see above.
- third.var
see above.
- utility.plot
plot of the selected utility measure.
- var.scores
an average of utility scores for all combinations with other variables.
- plot
see above.
- print.tabs
see above.
- digits.tabs
see above.
- plot.title
see above.
- max.scale
see above.
- min.scale
see above.
- ntabstoprint
see above.
- nworst
see above.
- worstn
variable combinations with
nworst
worst utility scores.- worsttabs
observed and synthetic cross-tabulations for
worstn
.
References
Read, T.R.C. and Cressie, N.A.C. (1988) Goodness--of--Fit Statistics for Discrete Multivariate Data, Springer--Verlag, New York.
Voas, D. and Williamson, P. (2001) Evaluating goodness-of-fit measures for synthetic microdata. Geographical and Environmental Modelling, 5(2), 177-200.
Examples
ods <- SD2011[1:1000, c("sex", "age", "edu", "marital", "region", "income")]
s1 <- syn(ods)
#>
#> Synthesis
#> -----------
#> sex age edu marital region income
### synthetic data provided as a 'synds' object
(t1 <- utility.tables(s1, ods, tab.stats = "all", print.tabs = TRUE))
#>
#> Two-way utility: S_pMSE value plotted for 15 pairs of variables.
#>
#> Variable combinations with worst 5 utility scores (S_pMSE):
#> 3.edu:4.marital 3.edu:6.income 4.marital:6.income 1.sex:3.edu
#> 2.4250 2.2399 2.0515 1.7562
#> 5.region:6.income
#> 1.6795
#>
#> Table of selected utility measures
#> VW FT JSD SPECKS WMabsDD U G
#> 1.sex:2.age 13.5480 13.5825 0.0024 0.046 11.5552 530749.5 13.8765
#> 1.sex:3.edu 14.0495 16.0694 0.0027 0.047 11.7750 531365.0 12.0713
#> 1.sex:4.marital 12.4275 12.4657 0.0022 0.049 13.0011 529537.5 12.5492
#> 1.sex:5.region 18.9728 19.1397 0.0034 0.049 23.7869 535973.5 18.6950
#> 1.sex:6.income 9.3742 9.3881 0.0017 0.039 10.8971 526724.0 9.4378
#> 2.age:3.edu 27.0988 29.1940 0.0050 0.066 23.5977 545009.0 24.8808
#> 2.age:4.marital 25.0989 35.2240 0.0052 0.048 24.8629 533018.0 15.7710
#> 2.age:5.region 79.5641 85.1280 0.0148 0.106 79.9712 576764.0 75.1965
#> 2.age:6.income 38.1826 38.7985 0.0070 0.062 26.9316 548473.5 37.9247
#> 3.edu:4.marital 63.0497 84.9123 0.0130 0.068 43.6769 550932.5 45.7973
#> 3.edu:5.region 74.8008 81.5838 0.0140 0.108 70.7818 574630.0 67.9978
#> 3.edu:6.income 53.7586 56.2707 0.0099 0.092 38.5360 563655.5 52.7679
#> 4.marital:5.region 121.4061 173.2982 0.0257 0.098 92.9615 577352.0 72.6354
#> 4.marital:6.income 75.9072 116.4769 0.0165 0.075 57.6446 556993.5 36.2427
#> 5.region:6.income 159.5497 171.3872 0.0299 0.156 124.7286 610671.0 162.9952
#> pMSE PO50 MabsDD dBhatt S_VW S_FT S_JSD S_WMabsDD
#> 1.sex:2.age 0.0008 2.30 0.092 0.0412 1.5053 1.5092 1.5692 1.2839
#> 1.sex:3.edu 0.0009 2.35 0.094 0.0448 1.7562 2.0087 1.9299 1.4719
#> 1.sex:4.marital 0.0008 2.45 0.098 0.0395 1.1298 1.1332 1.1781 1.1819
#> 1.sex:5.region 0.0012 2.45 0.098 0.0489 0.6120 0.6174 0.6406 0.7673
#> 1.sex:6.income 0.0006 1.95 0.078 0.0343 0.8522 0.8535 0.8877 0.9906
#> 2.age:3.edu 0.0017 3.30 0.132 0.0604 1.3549 1.4597 1.4536 1.1799
#> 2.age:4.marital 0.0016 2.40 0.096 0.0664 0.9653 1.3548 1.1625 0.9563
#> 2.age:5.region 0.0050 5.30 0.212 0.1032 1.0071 1.0776 1.0819 1.0123
#> 2.age:6.income 0.0024 3.10 0.124 0.0696 1.3166 1.3379 1.3848 0.9287
#> 3.edu:4.marital 0.0039 3.40 0.136 0.1030 2.4250 3.2659 2.8810 1.6799
#> 3.edu:5.region 0.0047 5.40 0.216 0.1010 1.1688 1.2747 1.2624 1.1060
#> 3.edu:6.income 0.0034 4.60 0.184 0.0839 2.2399 2.3446 2.3793 1.6057
#> 4.marital:5.region 0.0076 4.90 0.196 0.1472 1.6187 2.3106 1.9762 1.2395
#> 4.marital:6.income 0.0047 3.75 0.150 0.1207 2.0515 3.1480 2.5802 1.5580
#> 5.region:6.income 0.0100 7.80 0.312 0.1464 1.6795 1.8041 1.8144 1.3129
#> S_G S_pMSE df dfG
#> 1.sex:2.age 1.5418 1.5053 9 9
#> 1.sex:3.edu 1.7245 1.7562 8 7
#> 1.sex:4.marital 1.1408 1.1298 11 11
#> 1.sex:5.region 0.6031 0.6120 31 31
#> 1.sex:6.income 0.8580 0.8522 11 11
#> 2.age:3.edu 1.3095 1.3549 20 19
#> 2.age:4.marital 0.6857 0.9653 26 23
#> 2.age:5.region 0.9641 1.0071 79 78
#> 2.age:6.income 1.3077 1.3166 29 29
#> 3.edu:4.marital 2.5443 2.4250 26 18
#> 3.edu:5.region 1.0967 1.1688 64 62
#> 3.edu:6.income 2.2943 2.2399 24 23
#> 4.marital:5.region 1.1907 1.6187 75 61
#> 4.marital:6.income 1.5101 2.0515 37 24
#> 5.region:6.income 1.7340 1.6795 95 94
### synthetic data provided as a 'data.frame' object
(t1 <- utility.tables(s1$syn, ods, tab.stats = "all", print.tabs = TRUE))
#>
#> Two-way utility: S_pMSE value plotted for 15 pairs of variables.
#>
#> Variable combinations with worst 5 utility scores (S_pMSE):
#> 3.edu:4.marital 3.edu:6.income 4.marital:6.income 1.sex:3.edu
#> 2.4250 2.2399 2.0515 1.7562
#> 5.region:6.income
#> 1.6795
#>
#> Table of selected utility measures
#> VW FT JSD SPECKS WMabsDD U G
#> 1.sex:2.age 13.5480 13.5825 0.0024 0.046 11.5552 530749.5 13.8765
#> 1.sex:3.edu 14.0495 16.0694 0.0027 0.047 11.7750 531365.0 12.0713
#> 1.sex:4.marital 12.4275 12.4657 0.0022 0.049 13.0011 529537.5 12.5492
#> 1.sex:5.region 18.9728 19.1397 0.0034 0.049 23.7869 535973.5 18.6950
#> 1.sex:6.income 9.3742 9.3881 0.0017 0.039 10.8971 526724.0 9.4378
#> 2.age:3.edu 27.0988 29.1940 0.0050 0.066 23.5977 545009.0 24.8808
#> 2.age:4.marital 25.0989 35.2240 0.0052 0.048 24.8629 533018.0 15.7710
#> 2.age:5.region 79.5641 85.1280 0.0148 0.106 79.9712 576764.0 75.1965
#> 2.age:6.income 38.1826 38.7985 0.0070 0.062 26.9316 548473.5 37.9247
#> 3.edu:4.marital 63.0497 84.9123 0.0130 0.068 43.6769 550932.5 45.7973
#> 3.edu:5.region 74.8008 81.5838 0.0140 0.108 70.7818 574630.0 67.9978
#> 3.edu:6.income 53.7586 56.2707 0.0099 0.092 38.5360 563655.5 52.7679
#> 4.marital:5.region 121.4061 173.2982 0.0257 0.098 92.9615 577352.0 72.6354
#> 4.marital:6.income 75.9072 116.4769 0.0165 0.075 57.6446 556993.5 36.2427
#> 5.region:6.income 159.5497 171.3872 0.0299 0.156 124.7286 610671.0 162.9952
#> pMSE PO50 MabsDD dBhatt S_VW S_FT S_JSD S_WMabsDD
#> 1.sex:2.age 0.0008 2.30 0.092 0.0412 1.5053 1.5092 1.5692 1.2839
#> 1.sex:3.edu 0.0009 2.35 0.094 0.0448 1.7562 2.0087 1.9299 1.4719
#> 1.sex:4.marital 0.0008 2.45 0.098 0.0395 1.1298 1.1332 1.1781 1.1819
#> 1.sex:5.region 0.0012 2.45 0.098 0.0489 0.6120 0.6174 0.6406 0.7673
#> 1.sex:6.income 0.0006 1.95 0.078 0.0343 0.8522 0.8535 0.8877 0.9906
#> 2.age:3.edu 0.0017 3.30 0.132 0.0604 1.3549 1.4597 1.4536 1.1799
#> 2.age:4.marital 0.0016 2.40 0.096 0.0664 0.9653 1.3548 1.1625 0.9563
#> 2.age:5.region 0.0050 5.30 0.212 0.1032 1.0071 1.0776 1.0819 1.0123
#> 2.age:6.income 0.0024 3.10 0.124 0.0696 1.3166 1.3379 1.3848 0.9287
#> 3.edu:4.marital 0.0039 3.40 0.136 0.1030 2.4250 3.2659 2.8810 1.6799
#> 3.edu:5.region 0.0047 5.40 0.216 0.1010 1.1688 1.2747 1.2624 1.1060
#> 3.edu:6.income 0.0034 4.60 0.184 0.0839 2.2399 2.3446 2.3793 1.6057
#> 4.marital:5.region 0.0076 4.90 0.196 0.1472 1.6187 2.3106 1.9762 1.2395
#> 4.marital:6.income 0.0047 3.75 0.150 0.1207 2.0515 3.1480 2.5802 1.5580
#> 5.region:6.income 0.0100 7.80 0.312 0.1464 1.6795 1.8041 1.8144 1.3129
#> S_G S_pMSE df dfG
#> 1.sex:2.age 1.5418 1.5053 9 9
#> 1.sex:3.edu 1.7245 1.7562 8 7
#> 1.sex:4.marital 1.1408 1.1298 11 11
#> 1.sex:5.region 0.6031 0.6120 31 31
#> 1.sex:6.income 0.8580 0.8522 11 11
#> 2.age:3.edu 1.3095 1.3549 20 19
#> 2.age:4.marital 0.6857 0.9653 26 23
#> 2.age:5.region 0.9641 1.0071 79 78
#> 2.age:6.income 1.3077 1.3166 29 29
#> 3.edu:4.marital 2.5443 2.4250 26 18
#> 3.edu:5.region 1.0967 1.1688 64 62
#> 3.edu:6.income 2.2943 2.2399 24 23
#> 4.marital:5.region 1.1907 1.6187 75 61
#> 4.marital:6.income 1.5101 2.0515 37 24
#> 5.region:6.income 1.7340 1.6795 95 94
t2 <- utility.tables(s1, ods, tables = "twoway")
print(t2, max.scale = 3)
#>
#> Two-way utility: S_pMSE value plotted for 15 pairs of variables.
#>
#> Variable combinations with worst 5 utility scores (S_pMSE):
#> 3.edu:4.marital 3.edu:6.income 4.marital:6.income 1.sex:3.edu
#> 2.4250 2.2399 2.0515 1.7562
#> 5.region:6.income
#> 1.6795
#>
#> Medians and maxima of selected utility measures for all tables compared
#> Medians Maxima
#> pMSE 0.0024 0.010
#> S_pMSE 1.3549 2.425
#> df 26.0000 95.000
#>
#> For more details of all scores use print.tabs = TRUE.
(t3 <- utility.tables(s1, ods, tab.stats = "all", tables = "threeway",
third.var = "sex", print.tabs = TRUE))
#>
#> Three-way utility (total of 20 variable combinations):
#>
#> Average of 3-way scores S_pMSE (ordered) for 3-way tables including each variable.
#> 6.income 4.marital 3.edu 1.sex 5.region 2.age
#> 1.745562 1.740576 1.710200 1.601466 1.527327 1.517667
#>
#> Variable with highest average score, 1.sex, selected to make plots.
#> To see others, set parameter 'third.var'.
#>
#> Variable combinations with worst 5 utility scores (S_pMSE):
#> 1.sex:3.edu:4.marital 3.edu:4.marital:6.income
#> 2.3545 2.1137
#> 1.sex:4.marital:6.income 4.marital:5.region:6.income
#> 1.9452 1.8418
#> 3.edu:5.region:6.income
#> 1.7870
#>
#> Table of selected utility measures
#> VW FT JSD SPECKS WMabsDD U
#> 1.sex:2.age:3.edu 68.3580 71.5137 0.0126 0.103 53.7091 570300.0
#> 1.sex:2.age:4.marital 53.1420 63.8290 0.0104 0.084 48.5232 558238.0
#> 1.sex:2.age:5.region 195.1775 229.3586 0.0379 0.166 174.4574 619620.5
#> 1.sex:2.age:6.income 87.8049 94.0331 0.0164 0.113 73.3394 579764.0
#> 1.sex:3.edu:4.marital 101.2454 133.7126 0.0207 0.098 72.7155 573042.0
#> 1.sex:3.edu:5.region 161.7050 195.9694 0.0318 0.148 143.3987 606034.0
#> 1.sex:3.edu:6.income 72.9249 75.8103 0.0134 0.103 59.2648 575087.5
#> 1.sex:4.marital:5.region 200.8421 292.2690 0.0428 0.143 161.5521 608351.5
#> 1.sex:4.marital:6.income 118.6581 169.0391 0.0250 0.108 90.3779 580484.0
#> 1.sex:5.region:6.income 310.2146 400.4684 0.0630 0.195 233.9749 646743.0
#> 2.age:3.edu:4.marital 141.0044 204.0796 0.0300 0.120 117.1309 587121.5
#> 2.age:3.edu:5.region 377.2141 529.1660 0.0792 0.219 323.7140 662232.0
#> 2.age:3.edu:6.income 200.1727 244.7140 0.0395 0.165 150.7779 619389.5
#> 2.age:4.marital:5.region 333.5551 535.0839 0.0744 0.182 286.6636 642096.0
#> 2.age:4.marital:6.income 201.5031 296.0390 0.0433 0.131 153.7463 603605.0
#> 2.age:5.region:6.income 661.4622 1046.0735 0.1470 0.292 519.9739 719518.0
#> 3.edu:4.marital:5.region 364.9517 571.8842 0.0806 0.200 303.4234 653140.5
#> 3.edu:4.marital:6.income 230.3936 332.1226 0.0489 0.161 174.7419 620119.5
#> 3.edu:5.region:6.income 596.8706 920.4195 0.1310 0.284 463.4376 709316.0
#> 4.marital:5.region:6.income 567.2758 897.4909 0.1261 0.261 438.4289 699108.5
#> G pMSE PO50 MabsDD dBhatt S_VW S_FT
#> 1.sex:2.age:3.edu 65.4975 0.0043 5.15 0.206 0.0945 1.7090 1.7878
#> 1.sex:2.age:4.marital 45.0136 0.0033 4.20 0.168 0.0893 1.2359 1.4844
#> 1.sex:2.age:5.region 172.5799 0.0122 8.30 0.332 0.1693 1.2511 1.4702
#> 1.sex:2.age:6.income 88.1187 0.0055 5.65 0.226 0.1084 1.4882 1.5938
#> 1.sex:3.edu:4.marital 81.8634 0.0063 4.90 0.196 0.1293 2.3545 3.1096
#> 1.sex:3.edu:5.region 133.0191 0.0101 7.40 0.296 0.1565 1.2633 1.5310
#> 1.sex:3.edu:6.income 73.4145 0.0046 5.15 0.206 0.0973 1.5516 1.6130
#> 1.sex:4.marital:5.region 114.3982 0.0126 7.15 0.286 0.1911 1.5569 2.2657
#> 1.sex:4.marital:6.income 76.2070 0.0074 5.40 0.216 0.1454 1.9452 2.7711
#> 1.sex:5.region:6.income 269.4928 0.0194 9.75 0.390 0.2237 1.6589 2.1415
#> 2.age:3.edu:4.marital 86.0023 0.0088 6.00 0.240 0.1597 1.6589 2.4009
#> 2.age:3.edu:5.region 247.2862 0.0236 10.95 0.438 0.2572 1.3329 1.8698
#> 2.age:3.edu:6.income 167.3600 0.0125 8.25 0.330 0.1749 1.7714 2.1656
#> 2.age:4.marital:5.region 142.5463 0.0208 9.10 0.364 0.2586 1.4316 2.2965
#> 2.age:4.marital:6.income 123.7217 0.0126 6.55 0.262 0.1924 1.7077 2.5088
#> 2.age:5.region:6.income 322.4693 0.0413 14.60 0.584 0.3616 1.5901 2.5146
#> 3.edu:4.marital:5.region 171.8409 0.0228 10.00 0.400 0.2674 1.5596 2.4439
#> 3.edu:4.marital:6.income 144.1979 0.0144 8.05 0.322 0.2038 2.1137 3.0470
#> 3.edu:5.region:6.income 318.6324 0.0373 14.20 0.568 0.3392 1.7870 2.7557
#> 4.marital:5.region:6.income 290.6975 0.0355 13.05 0.522 0.3349 1.8418 2.9139
#> S_JSD S_WMabsDD S_G S_pMSE df dfG
#> 1.sex:2.age:3.edu 1.8183 1.3427 1.6794 1.7090 40 39
#> 1.sex:2.age:4.marital 1.3905 1.1284 1.1542 1.2359 43 39
#> 1.sex:2.age:5.region 1.4010 1.1183 1.1354 1.2511 156 152
#> 1.sex:2.age:6.income 1.6016 1.2430 1.5193 1.4882 59 58
#> 1.sex:3.edu:4.marital 2.7802 1.6911 2.5582 2.3545 43 32
#> 1.sex:3.edu:5.region 1.4315 1.1203 1.1178 1.2633 128 119
#> 1.sex:3.edu:6.income 1.6448 1.2610 1.5960 1.5516 47 46
#> 1.sex:4.marital:5.region 1.9161 1.2523 1.1327 1.5569 129 101
#> 1.sex:4.marital:6.income 2.3670 1.4816 1.7320 1.9452 61 44
#> 1.sex:5.region:6.income 1.9453 1.2512 1.5760 1.6589 187 171
#> 2.age:3.edu:4.marital 2.0344 1.3780 1.4099 1.6589 85 61
#> 2.age:3.edu:5.region 1.6160 1.1439 1.0568 1.3329 283 234
#> 2.age:3.edu:6.income 2.0178 1.3343 1.6092 1.7714 113 104
#> 2.age:4.marital:5.region 1.8438 1.2303 0.9138 1.4316 233 156
#> 2.age:4.marital:6.income 2.1174 1.3029 1.4555 1.7077 118 85
#> 2.age:5.region:6.income 2.0393 1.2499 1.0470 1.5901 416 308
#> 3.edu:4.marital:5.region 1.9865 1.2967 1.1015 1.5596 234 156
#> 3.edu:4.marital:6.income 2.5891 1.6031 1.9226 2.1137 109 75
#> 3.edu:5.region:6.income 2.2631 1.3875 1.3221 1.7870 334 241
#> 4.marital:5.region:6.income 2.3631 1.4235 1.4984 1.8418 308 194
(t4 <- utility.tables(s1, ods, tab.stats = "all", tables = "threeway",
third.var = "sex", useNA = FALSE, print.tabs = TRUE))
#>
#> Three-way utility (total of 20 variable combinations):
#>
#> Average of 3-way scores S_pMSE (ordered) for 3-way tables including each variable.
#> 4.marital 6.income 3.edu 1.sex 5.region 2.age
#> 1.718703 1.704867 1.703099 1.564257 1.530968 1.522167
#>
#> Variable with highest average score, 1.sex, selected to make plots.
#> To see others, set parameter 'third.var'.
#>
#> Variable combinations with worst 5 utility scores (S_pMSE):
#> 1.sex:3.edu:4.marital 3.edu:4.marital:6.income
#> 2.4481 2.0832
#> 4.marital:5.region:6.income 3.edu:5.region:6.income
#> 1.8844 1.8363
#> 2.age:4.marital:6.income
#> 1.8001
#>
#> Table of selected utility measures
#> VW FT JSD SPECKS WMabsDD U
#> 1.sex:2.age:3.edu 66.3902 67.5465 0.0121 0.1025 51.9261 569300.0
#> 1.sex:2.age:4.marital 52.4480 63.1101 0.0103 0.0837 47.4480 554075.0
#> 1.sex:2.age:5.region 195.1775 229.3586 0.0379 0.1660 174.4574 619620.5
#> 1.sex:2.age:6.income 71.9020 73.5852 0.0154 0.1153 61.0153 427964.0
#> 1.sex:3.edu:4.marital 90.5788 113.0263 0.0182 0.0954 62.8299 566048.0
#> 1.sex:3.edu:5.region 159.7839 192.0645 0.0313 0.1476 141.6757 605034.0
#> 1.sex:3.edu:6.income 55.9873 56.5803 0.0119 0.1008 47.1509 421758.0
#> 1.sex:4.marital:5.region 186.7474 264.1354 0.0395 0.1401 150.2122 601363.5
#> 1.sex:4.marital:6.income 70.4039 93.6665 0.0169 0.0935 61.1195 416374.5
#> 1.sex:5.region:6.income 262.4193 342.1608 0.0625 0.1916 195.1360 475579.5
#> 2.age:3.edu:4.marital 129.0044 180.0796 0.0271 0.1175 106.4962 580017.0
#> 2.age:3.edu:5.region 375.4010 525.4278 0.0788 0.2186 322.1180 661232.0
#> 2.age:3.edu:6.income 159.8386 183.3835 0.0359 0.1639 122.1902 455104.5
#> 2.age:4.marital:5.region 319.3939 506.8285 0.0712 0.1793 274.2918 635108.0
#> 2.age:4.marital:6.income 172.8107 242.9802 0.0427 0.1388 126.7859 444452.5
#> 2.age:5.region:6.income 563.1238 888.1617 0.1459 0.2917 443.3098 530350.0
#> 3.edu:4.marital:5.region 348.9517 539.8842 0.0769 0.1968 289.2438 645156.5
#> 3.edu:4.marital:6.income 179.1593 244.4541 0.0435 0.1558 134.8367 450361.0
#> 3.edu:5.region:6.income 503.1467 760.5998 0.1277 0.2863 388.5716 522378.5
#> 4.marital:5.region:6.income 489.9494 769.4582 0.1273 0.2663 377.9903 513431.0
#> G pMSE PO50 MabsDD dBhatt S_VW S_FT
#> 1.sex:2.age:3.edu 65.4975 0.0041 5.1276 0.2049 0.0919 1.7023 1.7320
#> 1.sex:2.age:4.marital 44.2499 0.0033 4.1897 0.1673 0.0890 1.3112 1.5778
#> 1.sex:2.age:5.region 172.5799 0.0122 8.3000 0.3320 0.1693 1.2511 1.4702
#> 1.sex:2.age:6.income 74.8773 0.0052 5.7625 0.2305 0.1036 1.4674 1.5017
#> 1.sex:3.edu:4.marital 81.2607 0.0057 4.7691 0.1908 0.1191 2.4481 3.0548
#> 1.sex:3.edu:5.region 133.0191 0.0100 7.3787 0.2951 0.1549 1.2581 1.5123
#> 1.sex:3.edu:6.income 57.2584 0.0041 5.0379 0.2016 0.0908 1.4733 1.4890
#> 1.sex:4.marital:5.region 114.3982 0.0117 6.9995 0.2801 0.1821 1.5183 2.1474
#> 1.sex:4.marital:6.income 50.3129 0.0052 4.6464 0.1869 0.1172 1.5305 2.0362
#> 1.sex:5.region:6.income 225.9267 0.0191 9.5460 0.3832 0.2234 1.6822 2.1933
#> 2.age:3.edu:4.marital 86.0023 0.0081 5.8735 0.2349 0.1503 1.6539 2.3087
#> 2.age:3.edu:5.region 247.2862 0.0235 10.9305 0.4373 0.2563 1.3312 1.8632
#> 2.age:3.edu:6.income 146.1639 0.0117 8.1829 0.3277 0.1635 1.7004 1.9509
#> 2.age:4.marital:5.region 142.5463 0.0200 8.9563 0.3585 0.2522 1.4132 2.2426
#> 2.age:4.marital:6.income 118.9872 0.0127 6.9258 0.2777 0.1887 1.8001 2.5310
#> 2.age:5.region:6.income 275.3497 0.0411 14.5518 0.5834 0.3599 1.5907 2.5089
#> 3.edu:4.marital:5.region 171.8409 0.0219 9.8394 0.3936 0.2603 1.5440 2.3889
#> 3.edu:4.marital:6.income 128.4875 0.0131 7.7778 0.3117 0.1893 2.0832 2.8425
#> 3.edu:5.region:6.income 286.5560 0.0367 14.2982 0.5725 0.3331 1.8363 2.7759
#> 4.marital:5.region:6.income 260.0205 0.0359 13.2963 0.5327 0.3358 1.8844 2.9595
#> S_JSD S_WMabsDD S_G S_pMSE df dfG
#> 1.sex:2.age:3.edu 1.7909 1.3314 1.6794 1.7023 39 39
#> 1.sex:2.age:4.marital 1.4771 1.1862 1.2292 1.3112 40 36
#> 1.sex:2.age:5.region 1.4010 1.1183 1.1354 1.2511 156 152
#> 1.sex:2.age:6.income 1.5540 1.2452 1.5281 1.4674 49 49
#> 1.sex:3.edu:4.marital 2.8220 1.6981 2.6213 2.4481 37 31
#> 1.sex:3.edu:5.region 1.4200 1.1156 1.1178 1.2581 127 119
#> 1.sex:3.edu:6.income 1.5467 1.2408 1.5068 1.4733 38 38
#> 1.sex:4.marital:5.region 1.8455 1.2212 1.1327 1.5183 123 101
#> 1.sex:4.marital:6.income 1.8094 1.3287 1.3240 1.5305 46 38
#> 1.sex:5.region:6.income 1.9870 1.2509 1.5799 1.6822 156 143
#> 2.age:3.edu:4.marital 1.9950 1.3653 1.4334 1.6539 78 60
#> 2.age:3.edu:5.region 1.6114 1.1423 1.0568 1.3312 282 234
#> 2.age:3.edu:6.income 1.8899 1.2999 1.6423 1.7004 94 89
#> 2.age:4.marital:5.region 1.8116 1.2137 0.9138 1.4132 226 156
#> 2.age:4.marital:6.income 2.1955 1.3207 1.6079 1.8001 96 74
#> 2.age:5.region:6.income 2.0426 1.2523 1.0391 1.5907 354 265
#> 3.edu:4.marital:5.region 1.9547 1.2798 1.1015 1.5440 226 156
#> 3.edu:4.marital:6.income 2.4963 1.5679 1.9468 2.0832 86 66
#> 3.edu:5.region:6.income 2.3084 1.4181 1.4186 1.8363 274 202
#> 4.marital:5.region:6.income 2.4169 1.4538 1.5759 1.8844 260 165
(t5 <- utility.tables(s1, ods, tab.stats = "all",
print.tabs = TRUE))
#>
#> Two-way utility: S_pMSE value plotted for 15 pairs of variables.
#>
#> Variable combinations with worst 5 utility scores (S_pMSE):
#> 3.edu:4.marital 3.edu:6.income 4.marital:6.income 1.sex:3.edu
#> 2.4250 2.2399 2.0515 1.7562
#> 5.region:6.income
#> 1.6795
#>
#> Table of selected utility measures
#> VW FT JSD SPECKS WMabsDD U G
#> 1.sex:2.age 13.5480 13.5825 0.0024 0.046 11.5552 530749.5 13.8765
#> 1.sex:3.edu 14.0495 16.0694 0.0027 0.047 11.7750 531365.0 12.0713
#> 1.sex:4.marital 12.4275 12.4657 0.0022 0.049 13.0011 529537.5 12.5492
#> 1.sex:5.region 18.9728 19.1397 0.0034 0.049 23.7869 535973.5 18.6950
#> 1.sex:6.income 9.3742 9.3881 0.0017 0.039 10.8971 526724.0 9.4378
#> 2.age:3.edu 27.0988 29.1940 0.0050 0.066 23.5977 545009.0 24.8808
#> 2.age:4.marital 25.0989 35.2240 0.0052 0.048 24.8629 533018.0 15.7710
#> 2.age:5.region 79.5641 85.1280 0.0148 0.106 79.9712 576764.0 75.1965
#> 2.age:6.income 38.1826 38.7985 0.0070 0.062 26.9316 548473.5 37.9247
#> 3.edu:4.marital 63.0497 84.9123 0.0130 0.068 43.6769 550932.5 45.7973
#> 3.edu:5.region 74.8008 81.5838 0.0140 0.108 70.7818 574630.0 67.9978
#> 3.edu:6.income 53.7586 56.2707 0.0099 0.092 38.5360 563655.5 52.7679
#> 4.marital:5.region 121.4061 173.2982 0.0257 0.098 92.9615 577352.0 72.6354
#> 4.marital:6.income 75.9072 116.4769 0.0165 0.075 57.6446 556993.5 36.2427
#> 5.region:6.income 159.5497 171.3872 0.0299 0.156 124.7286 610671.0 162.9952
#> pMSE PO50 MabsDD dBhatt S_VW S_FT S_JSD S_WMabsDD
#> 1.sex:2.age 0.0008 2.30 0.092 0.0412 1.5053 1.5092 1.5692 1.2839
#> 1.sex:3.edu 0.0009 2.35 0.094 0.0448 1.7562 2.0087 1.9299 1.4719
#> 1.sex:4.marital 0.0008 2.45 0.098 0.0395 1.1298 1.1332 1.1781 1.1819
#> 1.sex:5.region 0.0012 2.45 0.098 0.0489 0.6120 0.6174 0.6406 0.7673
#> 1.sex:6.income 0.0006 1.95 0.078 0.0343 0.8522 0.8535 0.8877 0.9906
#> 2.age:3.edu 0.0017 3.30 0.132 0.0604 1.3549 1.4597 1.4536 1.1799
#> 2.age:4.marital 0.0016 2.40 0.096 0.0664 0.9653 1.3548 1.1625 0.9563
#> 2.age:5.region 0.0050 5.30 0.212 0.1032 1.0071 1.0776 1.0819 1.0123
#> 2.age:6.income 0.0024 3.10 0.124 0.0696 1.3166 1.3379 1.3848 0.9287
#> 3.edu:4.marital 0.0039 3.40 0.136 0.1030 2.4250 3.2659 2.8810 1.6799
#> 3.edu:5.region 0.0047 5.40 0.216 0.1010 1.1688 1.2747 1.2624 1.1060
#> 3.edu:6.income 0.0034 4.60 0.184 0.0839 2.2399 2.3446 2.3793 1.6057
#> 4.marital:5.region 0.0076 4.90 0.196 0.1472 1.6187 2.3106 1.9762 1.2395
#> 4.marital:6.income 0.0047 3.75 0.150 0.1207 2.0515 3.1480 2.5802 1.5580
#> 5.region:6.income 0.0100 7.80 0.312 0.1464 1.6795 1.8041 1.8144 1.3129
#> S_G S_pMSE df dfG
#> 1.sex:2.age 1.5418 1.5053 9 9
#> 1.sex:3.edu 1.7245 1.7562 8 7
#> 1.sex:4.marital 1.1408 1.1298 11 11
#> 1.sex:5.region 0.6031 0.6120 31 31
#> 1.sex:6.income 0.8580 0.8522 11 11
#> 2.age:3.edu 1.3095 1.3549 20 19
#> 2.age:4.marital 0.6857 0.9653 26 23
#> 2.age:5.region 0.9641 1.0071 79 78
#> 2.age:6.income 1.3077 1.3166 29 29
#> 3.edu:4.marital 2.5443 2.4250 26 18
#> 3.edu:5.region 1.0967 1.1688 64 62
#> 3.edu:6.income 2.2943 2.2399 24 23
#> 4.marital:5.region 1.1907 1.6187 75 61
#> 4.marital:6.income 1.5101 2.0515 37 24
#> 5.region:6.income 1.7340 1.6795 95 94